Penerapan Data Mining Untuk Memprediksi Daya Serap Lulusan Siswa Menggunakan Algoritma Native Bayes

Authors

  • Daka Waru Universitas Nurdin Hamzah Jambi, Indonesia
  • Reny Wahyuning Astuti Universitas Nurdin Hamzah Jambi, Indonesia
  • Novhirtamely Kahar Universitas Nurdin Hamzah Jambi, Indonesia

DOI:

https://doi.org/10.29240/arcitech.v1i1.3294

Keywords:

Absorbtion, Graduates, Naive Bayes, Rapidminer, WEKA

Abstract

The importance of predicting the absorption of Vocational High School (SMK) graduates in the world of work, especially SMK Negeri 9 Muaro Jambi which is not yet known about the prediction of the world of work that accepts SMK graduates so that the purpose of this study is to analyze the prediction of the accuracy of the absorption of graduates of SMK Negeri 9 Muaro Jambi as material. a reference to see whether the graduates of SMK Negeri 9 Muaro Jambi have achieved the expected goals or not so that this analysis can be used as input for schools to improve the competence of SMK students. This implementation is assisted by using the Rapidminer and WEKA applications with 100 alumni work data input. The attributes used in this analysis process are Department, Waiting Time and Field of Work and Class of Work Field Accuracy. The process in this analysis is carried out with data that has been provided with the Naïve Bayes Classification Method to predict the absorption of graduates. The results of this study the highest accuracy value in the Rapidminer application is at 100% and WEKA is at 100%.

Downloads

Download data is not yet available.

References

Alan, Dennis Et Al. 2013. System Analysis And Design With Uml 4th Edition. John Wiley And Sons.

Anhar, 2020, “Ilmu Komputerâ€, Dilihat 18 September 2020, Https://Ilmukomputer.Org/Wp-Content/Uploads/2009/06/Anharku-Flowchart.Pdf

Astuti, Reny., Puspitorini, S., & Akbar, Fajri. 2020. Implementasi Teorema Naïve Bayes Pada Analisa Dan Prediksi Bidang Pekerjaan Alumni Prodi Teknik Informatika Stmik Nurdin Hamzah Jambi. Fortech (Journal Of Information Technology) Vol. 4 No. 1.

Eko Prasetio, 2012. Data Mining Konsep Dan Aplikasi Menggunakan Matlab. Andi, Yogyakarta.

Kusuma, L. 2019. Prediksi Kemampuan Lulusan Smk Untuk Dapat Bersaing Di Dunia Kerja Dengan Menggunakan Naïve Bayes: Studi Kasus Smk Buddhi Tangerang. Algor,1(1) 56-63.

Manalu, E., Sianturi, F. A., & Manalu, M. R. 2017. Penerapan Algoritma Naïve Bayes Untuk Memprediksi Jumlah Produksi Barang Berdasarkan Data Persediaan Dan Jumlah Pemesanan Pada Cv. Papadan Mama Pastries. Jurnal Mantik Penusa, 1(2).

Midiarso, R., & Umilasari, R. 2019. Pemanfaatan Algoritma Naive Bayes Untuk Klasifikasi Status Alumni Smk Bustanul Ulum Al-Ghazali Wuluhan Jember. Undergraduate Thesis. Universitas Muhammadiyah Jember.

Nursubiyantoro, Eko & Puryani, Puryani. 2016. Perancangan Sistem Penelusuran Alumni (Tracer Study) Berbasis Web. Opsi. 9. 85. 10.31315/Opsi.V9i2.2228.

Shiddieq, D., & Fadillah, M. 2020. Penerapan Metode K-Means Untuk Klasifikasi Bidang Pekerjaan Alumni. Jurnal Komputer Bisnis, 12(2), 58-62.

Suliyanto, 2012. “Analisis Statistik Pendekatan Praktis Dengan Microsoft Excelâ€, Andi, Yogyakarta.

Suyanto. 2017. Data Mining Untuk Klasifikasi Dan Klasterisasi Data. Bandung, Informatika.

Tri Vulandari, R., 2017. Data Mining Teori Dan Aplikasi Rapidminer, Penerbit Gava Media, Yogyakarta.

Vijayarani, D., & Dhayanand, M. 2015. Liver Disease Prediction Using Svm And Naïve Bayes Algorithms. India: International Journal Ofscience, Engineering And Technology Research.

Downloads

Published

30-06-2021

How to Cite

Waru, D., Astuti, R. W., & Kahar, N. (2021). Penerapan Data Mining Untuk Memprediksi Daya Serap Lulusan Siswa Menggunakan Algoritma Native Bayes. Arcitech: Journal of Computer Science and Artificial Intelligence, 1(1), 57–72. https://doi.org/10.29240/arcitech.v1i1.3294

Issue

Section

Articles

Citation Check